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Abstract. The multi-dimensional Euler-Poisson system describes the dynamic behav-
ior of many important physical flows, yet as a hyperbolic system its solution can blow-up
for some initial configurations. This article strives to advance our understanding on the
critical threshold phenomena through the study of a two-dimensional modified Euler-
Poisson system with a modified Riesz transform where the singularity at the origin is
removed. We identify upper-thresholds for finite time blow-up of solutions for the mod-
ified Euler-Poisson equations with attractive/repulsive forcing.

1. Introduction

We are concerned with the threshold phenomenon in two-dimensional Euler-Poisson
equations. The pressure-less Euler-Poisson (EP) equations in multi-dimensions are

(1.1a) ρt +∇ · (ρu) = 0,

(1.1b) ut + u · ∇u = k∇∆−1ρ,

which are the usual statements of the conservation of mass and Newton’s second law.
Here k is a physical constant which parameterizes the repulsive k > 0 or attractive
k < 0 forcing. The local density ρ = ρ(t, ~x) : R+ × R2 7→ R+ and the velocity field
u(t, ~x) : R+ × R2 7→ R2 are the unknowns. This hyperbolic system (1.1) with non-
local forcing describes the dynamic behavior of many important physical flows, including
plasma with collision, cosmological waves, charge transport, and the collapse of stars due
to self gravitation.

There is a considerable amount of literature available on the solution behavior of Euler-
Poisson system. Let us mention the study of steady-state solutions [15] and the global
existence of weak solutions [16]. Global existence due to damping relaxation and with
non-zero background can be found in [18]. Construction of a global smooth irrotational
solution in three and two dimensional space can be found in [5, 7].

To address the fundamental question of the persistence of C1 regularity for solutions of
the Euler-Poisson system and related models, the concept of Critical Threshold (CT) is
originated and developed in a series of papers by Engelberg, Liu and Tadmor [4, 11, 12, 13,
14] and more. The critical threshold in [4] describes the conditional stability of the one-
dimensional Euler-Poisson system, where the answer to the question of global vs. local
existence depends on whether the initial data crosses a critical threshold. Following [4],
critical thresholds have been identified for several one-dimensional models, including 2×2
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quasi-linear hyperbolic relaxation systems [10], Euler equations with non-local interaction
and alignment forces [1], and traffic flow models [9].

Moving to the multi-dimensional setup, one needs to identify the proper quantities to
describe the critical threshold phenomenon. Liu and Tadmor introduce in [11] the method
of spectral dynamics which relies on the dynamical system governing eigenvalues of the
velocity gradient matrix, M := ∇u, along particle paths. In order to trace the evolution
of M := ∇u, we differentiate (1.1b), obtaining

(1.2) ∂tM + u · ∇M +M2 = k∇⊗∇∆−1ρ = kR[ρ],

where R[·] is the 2× 2 Riesz matrix operator, defined as

R[h] := ∇⊗∇∆−1[h] = F−1
{
ξiξj
|ξ|2

ĥ(ξ)

}
i,j=1,2

.

We let D
Dt

[·] = [·]′ be the usual material derivative, ∂
∂t

+ u · ∇. We are concerned with
the initial value problem (1.2) or

(1.3)
D

Dt
M +

(
M2

11 +M12M21 dM12

dM21 M12M21 +M2
22

)
= k

(
R11[ρ] R12[ρ]
R21[ρ] R22[ρ]

)
.

subject to initial data
(M,ρ)(0, ·) = (M0, ρ0).

The global nature of the Riesz matrix R[ρ], makes the issue of regularity for Euler-Poisson
equations such an intricate question to solve.

This work propose a modified Euler-Poisson system as an effort to gain a better un-
derstanding on Euler-Poisson equation (1.3). Before we introduce the modified Euler-
Poisson system, we introduce several quantities with which we characterize the behavior
of the velocity gradient tensor M . These are the trace d := trM = ∇ · u, the vorticity
ω := ∇× u = M21 −M12 and nonlinear quantities η := M11 −M22 and ξ := M12 +M21.

Taking the trace of (1.3), one obtain

d′ = −(M2
11 +M2

22)− 2M12M21 + k(R11[ρ] +R22[ρ])

= −
{

(M11 +M22)
2

2
+

(M11 −M22)
2

2

}
+

(M21 −M12)
2

2
− (M12 +M21)

2

2
+ kρ

= −1

2
d2 − 1

2
η2 +

1

2
ω2 − 1

2
ξ2 + kρ.

(1.4)

From the matrix equation (1.3), and (1.1a), we obtain

(1.5a) η′ + ηd = k(R11[ρ]−R22[ρ]),

(1.5b) ω′ + ωd = k(R21[ρ]−R12[ρ]) = 0,

(1.5c) ξ′ + ξd = k(R12[ρ] +R21[ρ]),

(1.5d) ρ′ + ρd = 0.

From (1.5b) and (1.6a), we derive
ω

ω0

=
ρ

ρ0
.

This allows us to rewrite the system (1.4) and (1.1a), i.e.
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(1.6a) d′ = −1

2
d2 +

1

2

(ω0

ρ0

)2
ρ2 − 1

2
η2 − 1

2
ξ2 + kρ,

(1.6b) ρ′ = −ρd
We can see that the equation (1.4) is the Ricatti-type equation; one can view the

dynamics of d as the result of a contest between negative and positive terms in (1.4). For
example, one might think bigger |ω|(correspond to the size of vorticity) prevents the finite
time blow-up as opposed to the bigger η, ξ help the finite time blow-up.

To put our study in a proper perspective we recall a few recent works in the form of
(1.6). Once we re-write the ω2 term using ρ as written in (1.6a) one can see that by
setting ω0 = 0 i.e., assuming vanishing initial vorticity, and dropping −η2, −ξ2 terms,
(1.6a) is reduced to simple Ricatti-type inequality

d′ ≤ −d
2

2
+ kρ.

Using this argument, Chae and Tadmor [2] proved the finite time blow-up for solutions
of k < 0 case in arbitrary space dimension. Later Cheng and Tadmor [3] improved the
result of [2] using the delicate ODE phase plane argument.

Turning to the non-vanishing initial vorticity case, one need to investigate the compe-
tition between ρ2, η2 and ξ2 terms. Apparently the two latter terms help the blow-up
of d. However, we have no clear idea on how fast η and ξ terms are changing in time.
This is because (see (1.5a) and (1.5c)) we are lack of L∞ bound of Rij[ρ]. To gain better
understanding of the dynamics of d, Liu and Tadmor introduce the restricted Euler-
Poisson(REP) system[11, 12], which is obtained from (1.3) by restricting attention to the
local isotropic trace k

2
ρI2×2 of the global coupling term kR[ρ]. Then in the REP system,

(1.5a) and (1.5c) are changed to

η′ = −ηd, and ξ′ = −ξd,
respectively. Thus (1.6a) is reduced to

d′ = −1

2
d2 +

1

2

(ω0

ρ0

)2
ρ2 − 1

2

(η0
ρ0

)2
ρ2 − 1

2

( ξ0
ρ0

)2
ρ2 + kρ,

or

d′ +
d2 + βρ2

2
= kρ.

They studied the dynamics of (ρ, d) parametrized by β, and it was shown that in the repul-
sive case, the restricted two-dimensional REP system admits two-sided critical threshold.
For arbitrary n ≥ 3 dimensional REP system, the author and Liu identified both upper-
thresholds for finite time blow-up of solutions and sub-thresholds for global existence of
solutions [8].

In this work, we propose a two-dimensional modified Euler-Poission(MEP) system with
a modified Riesz transform where singularity at origin is removed. We identify upper-
thresholds for finite time blow-up of solutions for the MEP system with attractive and
repulsive forcing.

As noted earlier, the main obstacle in handling (1.3) is the lack of an accurate descrip-
tion for the propagation of the Riesz transform. The modified Riesz transform in the
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MEP system is intended to take into account the global forcing in the full Euler-Poisson
equations, as opposed to the REP systems in [8, 11, 12] are localized Euler-Poisson equa-
tions.

In [8, 11, 12], multi-dimensional REP system’s blow-up conditions depend on the rel-
atives sizes of the following quantities: the initial density, the initial divergence and the
eigenvalues of the initial velocity gradient matrix. In addition to these initial quantities,
for the blow-up of the MEP system, the relative size of the initial total mass plays an
important role.

The rest of this paper is organized as follows. In section 2, we introduce a Modified
Riesz transform and study the Euler-Poisson equations with the modified Riesz transform.
We state our main results about finite time blow-up of solutions to the modified Euler-
Poission system. The details of the proofs of those main results are carried out in Section
3. Finally in the appendix, we discuss the detailed calculation of the Riesz transform.

2. Modified Riesz transform and statement of main results

In this section we start with introducing the Modified Riesz transform and discuss some
motivation behind the definition.

One can explicitly calculate ∂2

∂xj∂xi
∆−1h(~x), i.e.,

(2.1) (Rij[h])(~x) = p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y +

h(~x)

2π

∫
|~z|=1

zizj d~z,

where G(~y) is the Poisson kernel in two-dimensions, and is given by

G(~y) =
1

2π
log |~y|.

The detailed calculations are given in the Appendix. Due to the singular nature of the
integral, we are lack of L∞ estimate of the Rij[h].

We try to approximate Rij by replacing the Cauchy principle integral by the integral
over the R2 \ B(0, ν)(i.e., an open origin-centered disk of pre-determined radius ν is
removed from R2). That is, we define the modified Riesz transform as follows:

Definition 2.1. (The modified Riesz transform) Let h : R2 → R be a smooth function
with ‖h‖L1(R2) <∞. For 0 < ν << 1, we define the modified Riesz transform as follow:

(Rν
ij[h])(~x) :=

∫
R2\B(0,ν)

∂2

∂yi∂yj
G(~y)h(~x− ~y) d~y +

h(~x)

2π

∫
|~z|=1

zizj d~z,

where G(~x) = 1
2π

log |~x| is the Green’s function for the Poisson equation in two-dimensions.

Remark) Some remarks are in order at this point.
i) For our blow-up analysis one can let ν be very small, as long as ν is fixed. One may

obtain Rν
ij[h] → Rij[h] as ν → 0 for a smooth function h. So one may consider Rν

ij[h] as
an approximation of Rij[h].

ii) As we recover ρ from the trace of the right hand side of (1.3), i.e., R11[ρ]+R22[ρ] = ρ,
we obtain the same result with the modified Riesz transform,

Rν
11[h] +Rν

22[h] = h.



BLOW-UP CONDITIONS FOR TWO DIMENSIONAL MODIFIED EULER-POISSON EQUATIONS 5

iii) Since we removed the singular integral issue by restricting attention to R2 \B(~0, ν),
we will later estimate the integral using the L1 norm of h.

From now on, we are concerned with the initial value problem of the modified Euler-
Poisson(MEP) system

(2.2a)
D

Dt
M +

(
M2

11 +M12M21 dM12

dM21 M12M21 +M2
22

)
= k

(
Rν

11[ρ] Rν
12[ρ]

Rν
21[ρ] Rν

22[ρ]

)
,

(2.2b)
D

Dt
ρ+ ρtrM = 0,

subject to initial data
(M,ρ)(0, ·) = (M0, ρ0).

Our goal of this work is to prove the following results.

Theorem 2.2. Consider the two-dimensional attractive MEP system (2.2) with k < 0.
Suppose that ρ(0, ·) ∈ L1(R2), d0 < 0 and ρ0 > 0. If there exist a constant µ such that

|ω0|
ρ0

< µ <

√
η20 + ξ20
ρ0

,

and
F (µ, d0, ω0, ρ0, η0, ξ0, ‖ρ(0, ·)‖L1(R2)) ≥ 0,

then d(t) and ρ(t) must blow-up at some finite time. Here F is given by,

F (µ, d, ω, ρ, η, ξ, ‖ρ(0, ·)‖L1(R2)) :=
πν2√

2|k|‖ρ(0, ·)‖L1(R2)

(√
η2 + ξ2 − ρµ

)
− π + 2 arctan(d/

√
µ2ρ2 − ω2 − 2kρ)√

µ2ρ2 − ω2 − 2kρ
.

Theorem 2.3. Consider the two-dimensional repulsive MEP system (2.2) with k > 0.
Suppose that ρ(0, ·) ∈ L1(R2), d0 < 0 and ρ0 > 0. If there exist a constant µ such that√(

ω0

ρ0

)2

+
2k

ρ0
< µ <

√
η20 + ξ20
ρ0

,

and
F (µ, d0, ω0, ρ0, η0, ξ0, ‖ρ(0, ·)‖L1(R2)) ≥ 0,

then d(t) and ρ(t) must blow-up at some finite time. Here F is given in Theorem 2.2.

Remark) Some remarks are in order at this point.
(i) We first notice that the set of initial configurations that satisfy F ≥ 0 is a non-empty

set. Indeed, the first term

πν2√
2|k|‖ρ(0, ·)‖L1(R2)

(√
η2 + ξ2 − ρµ

)
of F is positive, and the second term

−π + 2 arctan(d/
√
µ2ρ2 − ω2 − 2kρ)√

µ2ρ2 − ω2 − 2kρ
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is negative because | arctan(·)| < π
2
. The second term approaches zero as d goes −∞,

therefore, for sufficiently small d the condition F ≥ 0 is ensured.
(ii) The critical threshold in one-dimensional Euler-Poisson equations[4] depends only

on the relative size of the initial velocity gradient and initial density. In contrast to the one-
dimensional Euler-Poisson equations, the threshold conditions in two-dimensional MEP
equations depend on several initial quantities: density ρ0, divergence d0, vorticity ω0, gaps
η0, ξ0 and even total mass ‖ρ(0, ·)‖L1(R2).

(iii) One can easily check that how F depends on those initial configurations:

∂F

∂d
< 0,

∂F

∂(ω2)
< 0,

∂F

∂ρ
> 0,

∂F

∂‖ρ(0, ·)‖L1(R2)

> 0,
∂F

∂η
> 0, and

∂F

∂ξ
> 0.

For example, F is increasing in ρ, ‖ρ(0, ·)‖L1(R2) and −d. This is interpreted as if there is
a point ~x ∈ R2 with highly accumulated mass with low divergence, then there may be a
finite time blow-up of the density.

(iv) The condition ∂F
∂(ω2)

< 0 is understood as to ensure the finite time blow-up, relatively

small size of initial vorticity |∇×u0| is needed. This fact is consistent with the results in
so-called restricted type flows(e.g. [12], [11] and [13]); especially the result in [12] show
that the global smooth solution is ensured if the initial velocity gradient has complex
eigenvalues, which applies, for example, for a class of initial configurations with sufficiently
large vorticity.

(v) By setting ν small, one may use Theorems 2.2 and 2.3 to understand the blow-up
phenomenon for the full Euler-Poisson equations. But as ν ↘ 0 one can see that the first
term

πν2√
2|k|‖ρ(0, ·)‖L1(R2)

(√
η2 + ξ2 − ρµ

)
,

which is positive, of F approaches 0. So as ν ↘ 0, the initial configurations set that
ensure finite time blow-up is impoverished.

3. Proofs of main Theorems

We first start with solving the ODEs (1.5a) and (1.5c). We let

(3.1) f(t) := k(Rν
11[ρ]−Rν

22[ρ]),

and consider (1.5a) or

η′ + ηd = f(t)

⇒
{
e
∫ t
0 d(s) dsη

}′
= f(t)e

∫ t
0 d(s) ds

⇒ e
∫ t
0 d(s) dsη(t) =

∫ t

0

f(r)e
∫ τ
0 d(s) ds dτ + η(0).

(3.2)

Thus, since

ρ(t) = ρ0e
−

∫ t
0 d(s) ds,
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we obtain

η(t) = η0e
−

∫ t
0 d(s) ds + e−

∫ t
0 d(s) ds

∫ t

0

f(r)e
∫ τ
0 d(s) ds dτ

= η0
ρ

ρ0
+

ρ

ρ0

∫ t

0

f(τ)
ρ0
ρ
dτ

=

(
η0
ρ0

+

∫ t

0

f(τ)

ρ(r, ~x(τ))
dτ

)
ρ(t, ~x(t)).

(3.3)

In the sequel, we use the simple notation for ρ(t, ~x(t)). That is

(3.4) η(t) =

(
η0
ρ0

+

∫ t

0

f(τ)

ρ(τ)
dτ

)
ρ(t).

Similarly we let
g(t) := k(Rν

12[ρ] +Rν
21[ρ]) = 2kRν

12[ρ],

and solve ODE (1.5c), to obatin

(3.5) ξ(t) =

(
ξ0
ρ0

+

∫ t

0

g(τ)

ρ(τ)
dτ

)
ρ(t).

Now with (3.4) and (3.5), we rewrite the system (1.6) as follows

(3.6a) d′ = −1

2
d2 +

1

2

[(
ω0

ρ0

)2

−
(
η0
ρ0

+

∫ t

0

f(τ)

ρ(τ)
dτ

)2

−
(
ξ0
ρ0

+

∫ t

0

g(τ)

ρ(τ)
dτ

)2]
ρ2 + kρ,

(3.6b) ρ′ = −ρd.
We estimate the integrals in (3.6a):

Lemma 3.1. For t > 0, it holds∣∣∣∣ ∫ t

0

f(τ)

ρ(τ)
dτ

∣∣∣∣ ≤ |k|‖ρ(0, ·)‖L1(R2)

πν2
·
∫ t

0

1

ρ(τ)
dτ,

and ∣∣∣∣ ∫ t

0

g(τ)

ρ(τ)
dτ

∣∣∣∣ ≤ |k|‖ρ(0, ·)‖L1(R2)

πν2
·
∫ t

0

1

ρ(τ)
dτ.

Proof. We first estimate |f(t)| and |g(t)|. We note that

∂2G(~y)

∂y21
=

1

2π
· −y

2
1 + y22

(y21 + y22)2
and

∂2G(~y)

∂y21
=

1

2π
· y21 − y22

(y21 + y22)2
.

From (3.1) we obtain,

|f(t)| =
∣∣∣∣kπ
∫
R2\B(0,ν)

−y21 + y22
(y21 + y22)2

ρ(t, ~x(t)− ~y) d~y +
kρ(t, ~x(t))

2π

∫
|~z|=1

z21 − z22 d~z
∣∣∣∣

≤ |k|
π

1

ν2
‖ρ(t, ·)‖L1(R2) + 0,

(3.7)

here the second integral vanishes due to symmetry. Since ‖ρ(t, ·)‖L1(R2) = ‖ρ(0, ·)‖L1(R2),
∀t ≥ 0 from (1.1a), we obtain

|f(t)| ≤ |k|
πν2
‖ρ(0, ·)‖L1(R2).
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For the bounds of g(t), we note that ∂2G(~y)
∂y1∂y2

= 1
π
−y1y2

(y21+y
2
2)

2 , and the bound is obtained

similarly, i.e.,

|g(t)| ≤ |k|
πν2
‖ρ(0, ·)‖L1(R2).

We next apply these estimates to obtain,∣∣∣∣ ∫ t

0

f(τ)

ρ(τ)
dτ

∣∣∣∣ ≤ ∫ t

0

|f(τ)|
ρ(τ)

dτ

≤ |k|
πν2
‖ρ(0, ·)‖L1(R2) ·

∫ t

0

1

ρ(τ)
dτ,

(3.8)

and thus the desired results follows. The bound of
∣∣ ∫ t

0
g(τ)
ρ(τ)

dτ
∣∣ is obtained similarly. �

Once we consider the coefficient of ρ2 in (3.6a), for a short time interval, the coefficient
is dominated by

1

2

[(
ω0

ρ0

)2

−
(
η0
ρ0

)2

−
(
ξ0
ρ0

)2]
,

because two integrals in (3.6a) have value zero at t = 0. We state this observation as our
key lemma:

Lemma 3.2. For any µ ∈ (0, 1
ρ0

√
η20 + ξ20 ], there exists T > 0 such that

d′ ≤ −1

2
d2 +

1

2

{(
ω0

ρ0

)2

− µ2

}
ρ2 + kρ,

ρ′ = −dρ,
(3.9)

for all t ∈ [0, T ]. Furthermore, the lower bound t∗ > 0 of T is obtained from

(3.10)

√(
η0
ρ0

)2

+

(
ξ0
ρ0

)2

− µ =

√
2|k|‖ρ(0, ·)‖L1(R2)

πν2

∫ t∗

0

1

ρ(τ)
dτ.

Proof. From (3.6a), it suffices to show that

(3.11)

(
η0
ρ0

+

∫ t

0

f(τ)

ρ(τ)
dτ

)2

+

(
ξ0
ρ0

+

∫ t

0

g(τ)

ρ(τ)
dτ

)2

≥ µ2,

for all t ∈ [0, t∗]. The left hand side is interpreted as the square of the distance between
two points (

η0
ρ0
,
ξ0
ρ0

)
and

(
−
∫ t

0

f(τ)

ρ(τ)
dτ,−

∫ t

0

g(τ)

ρ(τ)
dτ

)
on R2.

For any time t, the latter point is located within the origin-centered disk of radius
√

2|k|‖ρ(0, ·)‖L1(R2)

πν2
·
∫ t

0

1

ρ(τ)
dτ,

due to Lemma 3.1. We note that the disk’s radius is 0 when t = 0, and the disk is
expanding in time. The lower bound t∗ is the instance when the expanding disk intersects
with (η0

ρ0
, ξ0
ρ0

)-centered disk of radius µ. Therefore, we obtain (3.10), and for any t ∈ [0, t∗],

the inequality (3.11) holds. This completes the proof. �
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Proof of Theorem 2.2 : We suppose that k < 0, d0 < 0 and ρ0 > 0. It is clear to
have that if (

ω0

ρ0

)2

− µ2 < 0,

then from (3.9), d(t) < 0 for all t ≤ [0, t∗]. Thus by the second equation in (3.9), ρ(t) is
strictly increasing in t and from (3.10), it follows that√(

η0
ρ0

)2

+

(
ξ0
ρ0

)2

− µ ≤
√

2|k|‖ρ(0, ·)‖L1(R2)

πν2
1

ρ0
· t∗.

This inequality allow us to obtain the explicit lower bound for t∗, i.e.,

(3.12) t∗ ≥ T ∗ :=
πν2ρ0√

2|k|‖ρ(0, ·)‖L1(R2)

{√(
η0
ρ0

)2

+

(
ξ0
ρ0

)2

− µ
}
.

Now, by Lemma 3.2, it holds

d′ ≤ −1

2
d2 +

1

2

{(
ω0

ρ0

)2

− µ2

}
ρ2 + kρ

≤ −1

2
d2 +

1

2

{(
ω0

ρ0

)2

− µ2

}
ρ20 + kρ0,

(3.13)

for all t ∈ [0, T ∗]. Here the last inequality holds because ρ(t) is strictly increasing and

both k and
(
ω0

ρ0

)2 − µ2 are negative. One can easily see that d0 < 0 leads to finite time

blow-up of d(t). But we note that the finite time blow-up must occurs before T ∗. We
therefore let

N :=
1

2

{
µ2 −

(
ω0

ρ0

)2}
ρ20 − kρ0,

(N is non-negative) and explicitly solve the ordinary differential inequality

(3.14) d′ ≤ −1

2
d2 −N

to obtain

(3.15) d(t) ≤ −
√

2N tan

(√
N

2
t− arctan

(
d0√
2N

))
.

Since N > 0, it follows that if d0 < 0, then d(t)→ −∞ as

t→
π
2

+ arctan( d0√
2N

)√
N/2

.

By requiring
π
2
+arctan(

d0√
2N

)√
N/2

≤ T ∗, we obtain the blow-up condition in the Theorem 2.2.

Proof of Theorem 2.3 : We suppose that k > 0, d0 < 0 and

(3.16) ρ0 ≥ ρ∗ :=
2k

µ2 − (ω0/ρ0)2
.
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These implies (
ω0

ρ0

)2

− µ2 ≤ −2k

ρ0
< 0.

Therefore,

1

2

{(
ω0

ρ0

)2

− µ2

}
ρ2 + kρ ≤ 0,

for all ρ ≥ ρ∗. Thus from Lemma 3.2, d(t) < 0 for all t ∈ [0, t∗] and ρ(t) is strictly
increasing in t. Therefore, (3.10) gives√(

η0
ρ0

)2

+

(
ξ0
ρ0

)2

− µ ≤
√

2|k|‖ρ(0, ·)‖L1(R2)

πν2
1

ρ0
· t∗.

This inequality allow us to obtain the explicit lower bound for t∗, i.e.,

(3.17) t∗ ≥ T ∗ :=
πν2ρ0√

2|k|‖ρ(0, ·)‖L1(R2)

{√(
η0
ρ0

)2

+

(
ξ0
ρ0

)2

− µ
}
.

We notice that T ∗ is equivalent to that in the proof of Theorem 2.2. Also, with the choice
of ρ0 satisfies (3.16), the same ordinary differential inequality in (3.14) holds. Therefore
we obtain the desired result.

4. Appendix - Derivation of Rij[·]

In this appendix section we calculate Rij[·], i.e, the 2nd order derivatives of ∆−1h(~x).
A similar calculation can be found in [17].

We first consider the 1st order derivative:

∂

∂xi
∆−1h(~x) = p.v.

∫
R2

G(~y)
∂

∂xi
h(~x− ~y) d~y

= lim
ε→0

[ ∫
|~y|≥ε

G(~y)
∂

∂xi
h(~x− ~y) d~y

]
= lim

ε→0

[ ∫
|~y|≥ε
−G(~y)

∂

∂yi
h(~x− ~y) d~y

]
= lim

ε→0

[
−
∫
|~y|=ε

G(~y)h(~x− ~y)
−yi
ε
d~y +

∫
|~y|≥ε

∂

∂yi
G(~y)h(~x− ~y) d~y

]
= lim

ε→0

∫
|~y|=ε

G(~y)h(~x− ~y)
yi
ε
d~y + p.v.

∫
R2

∂

∂yi
G(~y)h(~x− ~y) d~y

= p.v.

∫
R2

∂

∂yi
G(~y)h(~x− ~y) d~y,

(4.1)

where the last equality holds because

lim
ε→0

∫
|~y|=ε

G(~y)h(~x− ~y)
yi
ε
d~y = lim

ε→0

∫
|~z|=1

G(ε~z)h(~x− ε~z)ziε d~z

= h(~x) lim
ε→0

∫
|~z|=1

εG(ε~z)zi d~z = 0.

(4.2)
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We then calculate the 2nd order derivative:
(4.3)
∂2

∂xj∂xi
∆−1h(~x) =

∂

∂xj

[
p.v.

∫
R2

∂

∂yi
G(~y)h(~x− ~y) d~y

]
= lim

ε→0

[ ∫
|~y|≥ε

∂

∂yi
G(~y)

∂

∂xj
h(~x− ~y) d~y

]
= lim

ε→0

[ ∫
|~y|≥ε
− ∂

∂yi
G(~y)

∂

∂yj
h(~x− ~y) d~y

]
= lim

ε→0

[
−
∫
|~y|=ε

∂

∂yi
G(~y)h(~x− ~y)

−yj
ε

d~y +

∫
|~y|≥ε

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y

]
= lim

ε→0

∫
|~y|=ε

∂

∂yi
G(~y)h(~x− ~y)

yj
ε
d~y + p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y

= lim
ε→0

∫
|~z|=1

∂

∂yi
G(ε~z)h(~x− ε~z)zjε d~z + p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y

= h(~x) lim
ε→0

∫
|~z|=1

1

ε

∂

∂zi
G(ε~z)zjε d~z + p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y

= h(~x) lim
ε→0

∫
|~z|=1

∂

∂zi
G(ε~z)zj d~z + p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y

= h(~x) lim
ε→0

1

2π

∫
|~z|=1

zi
z21 + z22

· zj d~z + p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y.

Therefore,

(4.4)
∂2

∂xj∂xi
∆−1h(~x) = h(~x)

1

2π

∫
|~z|=1

zizj d~z + p.v.

∫
R2

∂2

∂yj∂yi
G(~y)h(~x− ~y) d~y.

Since
∂2

∂z21
G(~z) =

1

2π
· −z

2
1 + z22

(z21 + z22)2
and

∂2

∂z22
G(~z) =

1

2π
· −z

2
2 + z21

(z21 + z22)2
,

from (4.4), we notice that(
∂2

∂x21
+

∂2

∂x22

)
∆−1h(~x) = h(~x) + 0 = h(~x).(4.5)
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